Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ECN_1)}(2) \setminus P_{f(3POE_1)}(2)|=79\),
\(|P_{f(3POE_1)}(2) \setminus P_{f(1ECN_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010010010101001010111110111010101110100111001001010111000100111110011101101010100111000101100001001011110010100011110111110100111111001
Pair
\(Z_2\)
Length of longest common subsequence
1ECN_1,3POE_1
140
3
1ECN_1,6OWC_1
162
3
3POE_1,6OWC_1
164
3
Newick tree
[
6OWC_1:84.99,
[
1ECN_1:70,3POE_1:70
]:14.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{251
}{\log_{20}
251}-\frac{115}{\log_{20}115})=43.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ECN_1
3POE_1
53
49.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]