Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1DTT_1)}(2) \setminus P_{f(3AKF_1)}(2)|=88\),
\(|P_{f(3AKF_1)}(2) \setminus P_{f(1DTT_1)}(2)|=62\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011001110101110110100111000010111010001000101001110010001111100000001001101001000000110101111011110000010110110101011100010000110110100001110000011101101011110001001101100001011100010010110010110000010010001101110010000000111111100101001010111110000101001001110101100101110100100110100110011110001010110000110011011000100011101000101010001000110010010010101100001001001100100001111100101011100001001100010101110101100111101100100011111001010111000001101101000100011010000000001011011100011010110000011111010100000011001100110000101111110011110001001101110011
Pair
\(Z_2\)
Length of longest common subsequence
1DTT_1,3AKF_1
150
4
1DTT_1,6TLD_1
166
4
3AKF_1,6TLD_1
152
4
Newick tree
[
6TLD_1:81.04,
[
1DTT_1:75,3AKF_1:75
]:6.04
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1028
}{\log_{20}
1028}-\frac{468}{\log_{20}468})=146.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1DTT_1
3AKF_1
188
170.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]