Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1DTH_1)}(2) \setminus P_{f(1HMV_1)}(2)|=53\),
\(|P_{f(1HMV_1)}(2) \setminus P_{f(1DTH_1)}(2)|=147\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00011000101111100011100000100100010011011011000101010100101100000101001000010111010000110000000101101101000011111110100101011110000110111110110011001110001000101101011011100100001000010000011000010011001
Pair
\(Z_2\)
Length of longest common subsequence
1DTH_1,1HMV_1
200
4
1DTH_1,7DLY_1
188
3
1HMV_1,7DLY_1
160
4
Newick tree
[
1DTH_1:10.09,
[
7DLY_1:80,1HMV_1:80
]:22.09
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{763
}{\log_{20}
763}-\frac{203}{\log_{20}203})=156.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1DTH_1
1HMV_1
196
135
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]