Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1CLU_1)}(2) \setminus P_{f(3HXQ_1)}(2)|=75\),
\(|P_{f(3HXQ_1)}(2) \setminus P_{f(1CLU_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000011111111110011010110001100001010000000111010001101100110000011000010010111011110000010010000001001000001111111000011100100001001100011101000100001100110011001000
Pair
\(Z_2\)
Length of longest common subsequence
1CLU_1,3HXQ_1
156
4
1CLU_1,2VAI_1
134
2
3HXQ_1,2VAI_1
146
2
Newick tree
[
3HXQ_1:78.18,
[
1CLU_1:67,2VAI_1:67
]:11.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{375
}{\log_{20}
375}-\frac{166}{\log_{20}166})=62.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1CLU_1
3HXQ_1
78
70
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]