Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1CEN_1)}(2) \setminus P_{f(5QOR_1)}(2)|=136\),
\(|P_{f(5QOR_1)}(2) \setminus P_{f(1CEN_1)}(2)|=48\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101011101111100001100001001100001001101110010111001110000011000001100100010100000111110100111001001000011001000001101101110001000001110110011010000100111001011001000111011100000100100110100001100101001111000010100011100001001100011001100010001110100101000110001011101000000010010111111101000101000010110000111111000010101000000110001101110000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{510
}{\log_{20}
510}-\frac{167}{\log_{20}167})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1CEN_1
5QOR_1
128
95.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]