Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1BYC_1)}(2) \setminus P_{f(5HYB_1)}(2)|=196\),
\(|P_{f(5HYB_1)}(2) \setminus P_{f(1BYC_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000111001110111111110100110010110001101011110111101111110101100001010001101100011010111010001101101101111011101100000110000010000001011100011101001101000010010001001100111101011111110100100100011011011010000001010101111011010101100110000110001110001001000101110100001100100110010011110010111010110110010001101011000100001001110110000111010010100000100100110011001101110001011100111000101000111010101100011101011110010100011000010110011101010000010100000110110101101110111010010111111100010101
Pair
\(Z_2\)
Length of longest common subsequence
1BYC_1,5HYB_1
218
4
1BYC_1,1CGJ_1
186
4
5HYB_1,1CGJ_1
168
3
Newick tree
[
1BYC_1:10.46,
[
1CGJ_1:84,5HYB_1:84
]:22.46
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{586
}{\log_{20}
586}-\frac{91}{\log_{20}91})=146.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1BYC_1
5HYB_1
190
110
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]