Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1BQL_1)}(2) \setminus P_{f(6RUL_1)}(2)|=67\),
\(|P_{f(6RUL_1)}(2) \setminus P_{f(1BQL_1)}(2)|=106\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01110001111010110010100010001001010000010010011000001101111010101010000101001000011000000110010111100101001011101011110000100111011011001010010101010100000111001000000000001000101000000000000001000000011100100000
Pair
\(Z_2\)
Length of longest common subsequence
1BQL_1,6RUL_1
173
4
1BQL_1,8ENX_1
170
4
6RUL_1,8ENX_1
191
4
Newick tree
[
6RUL_1:93.05,
[
1BQL_1:85,8ENX_1:85
]:8.05
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{491
}{\log_{20}
491}-\frac{212}{\log_{20}212})=80.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
1BQL_1
6RUL_1
104
90
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]