CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
1BGQ_1 4NQZ_1 7CWN_1 Letter Amino acid
14 32 82 G Glycine
7 10 17 H Histidine
20 14 76 I Isoleucine
15 9 61 K Lycine
6 9 14 M Methionine
5 7 58 P Proline
1 2 12 W Tryptophan
0 3 40 C Cysteine
12 15 62 D Aspartic acid
9 4 62 Q Glutamine
22 16 48 E Glutamic acid
21 25 108 L Leucine
11 17 42 R Arginine
8 9 88 N Asparagine
11 12 77 F Phenylalanine
18 19 99 S Serine
12 13 97 T Threonine
6 6 54 Y Tyrosine
14 15 97 V Valine
13 36 79 A Alanine

1BGQ_1|Chain A|HEAT SHOCK PROTEIN 90|Saccharomyces cerevisiae (4932)
>4NQZ_1|Chains A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P|Enoyl-[acyl-carrier-protein] reductase [NADH] FabI|Pseudomonas aeruginosa (208964)
>7CWN_1|Chains A, B, C|Spike glycoprotein|Severe acute respiratory syndrome coronavirus 2 (2697049)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
1BGQ , Knot 101 225 0.81 38 150 213
MRGSHHHHHHGMASETFEFQAEITQLMSLIINTVYSNKEIFLRELISNASDALDKIRYKSLSDPKQLETEPDLFIRITPKPEQKVLEIRDSGIGMTKAELINNLGTIAKSGTKAFMEALSAGADVSMIGQFGVGFYSLFLVADRVQVISKSNDDEQYIWESNAGGSFTVTLDEVNERIGRGTILRLFLKDDQLEYLEEKRIKEVIKRHSEFVAYPIQLVVTKEVE
4NQZ , Knot 117 273 0.80 40 164 256
MGFLTGKRALIVGVASKLSIASGIAAAMHREGAELAFTYQNDKLRGRVEEFASGWGSRPELCFPCDVADDSQIEAVFAALGKHWDGLDIIVHSVGFAPGDQLDGDFTAVTTREGFRIAHDISAYSFIALAKAGREMMKGRNGSLLTLSYLGAERTMPNYNVMGMAKASLEAGVRYLAGSLGAEGTRVNAVSAGPIRTLAASGIKSFRKMLAANERQTPLRRNVTIEEVGNAGAFLCSDLASGISGEILYVDGGFNTTAMGPLDDDLEHHHHHH
7CWN , Knot 452 1273 0.84 40 338 1103
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(1BGQ_1)}(2) \setminus P_{f(4NQZ_1)}(2)|=70\), \(|P_{f(4NQZ_1)}(2) \setminus P_{f(1BGQ_1)}(2)|=84\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000000011100010101010011011100100000111001100100110010000100100100010111010101000110100011110010110011011001001110110111010111011111001111100101100000000011000111010101001000110101101110000100100001001100000111011011100010
Pair \(Z_2\) Length of longest common subsequence
1BGQ_1,4NQZ_1 154 6
1BGQ_1,7CWN_1 208 4
4NQZ_1,7CWN_1 202 5

Newick tree

 
[
	7CWN_1:10.70,
	[
		1BGQ_1:77,4NQZ_1:77
	]:32.70
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{498 }{\log_{20} 498}-\frac{225}{\log_{20}225})=78.7\)
Status Protein1 Protein2 d d1/2
Query variables 1BGQ_1 4NQZ_1 98 89.5
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]